
ODR: Output-Deterministic Replay for Multicore Debugging

Gautam Altekar and Ion Stoica
UC Berkeley

{galtekar, istoica}@cs.berkeley.edu

ABSTRACT

Reproducing bugs is hard. Deterministic replay systems ad-
dress this problem by providing a high-fidelity replica of an
original program run that can be repeatedly executed to
zero-in on bugs. Unfortunately, existing replay systems for
multiprocessor programs fall short. These systems either
incur high overheads, rely on non-standard multiprocessor
hardware, or fail to reliably reproduce executions. Their
primary stumbling block is data races – a source of non-
determinism that must be captured if executions are to be
faithfully reproduced.

In this paper, we present ODR–a software-only replay sys-
tem that reproduces bugs and provides low-overhead mul-
tiprocessor recording. The key observation behind ODR is
that, for debugging purposes, a replay system does not need
to generate a high-fidelity replica of the original execution.
Instead, it suffices to produce any execution that exhibits
the same outputs as the original. Guided by this observa-
tion, ODR relaxes its fidelity guarantees to avoid the problem
of reproducing data-races altogether. The result is a sys-
tem that replays real multiprocessor applications, such as
Apache, MySQL, and the Java Virtual Machine, and pro-
vides low record-mode overhead.

Categories and Subject Descriptors

D.2.5 [Testing and Debugging]: Debugging aids

General Terms

Reliability, Design, Performance

Keywords

Deterministic replay, Multicore, Debugging, Inference

1. INTRODUCTION
Computer software often fails. These failures, due to soft-

ware errors, manifest in the form of crashes, corrupt data,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’09, October 11–14,2009, Big Sky, Montana, USA.
Copyright 2009 ACM 978-1-60558-752-3/09/10 ...$10.00.

or service interruption. To understand and ultimately pre-
vent failures, developers employ cyclic debugging – they re-
execute the program several times in an effort to zero-in on
the root cause. Non-deterministic failures, however, are im-
mune to this debugging technique; they may not occur in a
re-execution of the program.

Non-deterministic failures can be reproduced using deter-
ministic replay (or record-replay) technology. Deterministic
replay works by first capturing data from non-deterministic
sources, such as the keyboard and network, and then substi-
tuting the same data in subsequent re-executions of the pro-
gram. Many replay systems have been built over the years,
and the resulting experience indicates that replay is valuable
in finding and reasoning about failures [3, 7, 8, 13,22].

The ideal record-replay system has three key properties.
First, it produces a high-fidelity replica of the original pro-
gram run, thereby enabling cyclic debugging of non-deter-
ministic failures. Second, it incurs low recording overhead,
which in turn enables in-production operation and ensures
minimal execution perturbation. Third, it supports paral-
lel applications running on commodity multi-core machines.
However, despite much research, the ideal replay system still
remains out of reach.

A major obstacle to building the ideal system is data-
races. These sources of non-determinism are prevalent in
modern software. Some are errors, but many are intentional.
In either case, the ideal-replay system must reproduce them
if it is to provide high-fidelity replay. Some replay systems
reproduce races by recording their outcomes, but they incur
high recording overheads [3, 5]. Other systems achieve low
record overhead, but rely on non-standard hardware [18].
Still others assume data-race freedom, but fail to reliably
reproduce failures [21].

In this paper, we present ODR–a software-only replay sys-
tem that reliably reproduces failures and provides low over-
head multiprocessor recording. The key observation behind
ODR is that a high-fidelity replay run, though sufficient, is
not necessary for replay-debugging. Instead, it suffices to
produce any run that exhibits the same output, even if that
run differs from the original. This observation permits ODR

to relax its fidelity guarantees and, in so doing, enables it to
circumvent the problem of reproducing and hence recording
data-race outcomes.

The key problem ODR must address is that of reproducing
a failed run without recording the outcomes of data-races.
This is challenging because the occurrence of a failure de-
pends in part on the outcomes of races. To address this
challenge, rather than record data-race outcomes, ODR in-

fers the data-race outcomes of an output-deterministic run.
Once inferred, ODR substitutes these values in subsequent
program runs. The result is output-deterministic replay.

To infer data-race outcomes, ODR uses a technique we term
Deterministic-Run Inference, or dri for short. dri searches
the space of runs for one that produces the same outputs
as the original. An exhaustive search of the run space is
intractable. But carefully selected clues recorded during the
original run in conjunction with memory-consistency relax-
ations often enable ODR to home-in on an output-deterministic
run in polynomial time.

We evaluate ODR on several sophisticated parallel applica-
tions, including Apache and the Splash 2 suite. Our results
show that, although our Linux/x86 implementation incurs
an average record-mode slowdown of only 1.6x, inference
times can be impractically high for many programs. How-
ever, we also show that there is a tradeoff between record-
ing overhead and inference time. For example, recording all
branches slows down the original execution by an average
4.5x. But the additional information can decrease inference
time by orders of magnitude. Overall, these results indicate
that ODR is a promising approach to the problem of repro-
ducing failures in multicore application runs.

2. THE PROBLEM
ODR addresses the output-failure replay problem. In short,

the problem is to ensure that all failures visible in the out-
put of some original program run are also visible in the re-
play runs of the same program. Examples of output-failures
include assertion violations, crashes, core dumps, and cor-
rupted data. The output-failure replay problem is important
because a vast majority of software errors result in output-
visible failures. Hence reproduction of these failures would
enable debugging of most software errors.

In contrast with the problem addressed by traditional re-
play systems, the output-failure replay problem is narrower
in scope. Specifically, it is narrower than the execution re-
play problem, which concerns the reproduction of all original-
execution properties and not just those of output-failures.
It is even narrower than the failure replay problem, which
concerns the reproduction of all failures, output-visible or
not. The latter includes timing related failures such as un-
expected delays between two outputs.

Any system that addresses the output-failure replay prob-
lem should replay output-failures. But to be practical, the
system must also meet the following requirements.

Support multiple processors or cores. Multiple cores
are a reality in modern commodity machines. A practical
replay system should allow applications to take full advan-
tage of those cores.

Support efficient and scalable recording. Production
operation is possible only if the system has low record over-
head. Moreover, this overhead must remain low as the num-
ber of processor cores increases.

Require only commodity hardware. A software-only
replay method can work in a variety of computing environ-
ments. Such wide-applicability is possible only if the system
does not introduce additional hardware complexity or re-
quire unconventional hardware.

int status = ALIVE, int *reaped = NULL

Master (Thread 1; CPU 1)

1 r0 = status
2 if (r0 == DEAD)
3 ∗reaped++

Worker (Thread 2; CPU 2)

1 r1 = input
2 if (r1 == DIE or END)
3 status = DEAD

Figure 1: Benign races can prevent even non-concurrency fail-
ures from being reproduced, as shown in this example adapted
from the Apache web-server. The master thread periodically polls
the worker’s status, without acquiring any locks, to determine if
it should be reaped. It crashes only if it finds that the worker is
DEAD.

3. BACKGROUND: VALUEDETERMINISM
The classic approach to the output-failure replay problem

is value determinism. Value determinism stipulates that a
replay run reads and writes the same values to and from
memory, at the same execution points, as the original run.
Figure 2(b) shows an example of a value-deterministic run of
the code in Figure 1. The run is value-deterministic because
it reads the value DEAD from variable status at execution
point 1.1 and writes the value DEAD at 2.3, just like the
original run.

Value determinism is not perfect: it it does not guarantee
causal ordering of instructions. For instance, in Figure 2(b),
the master thread’s read of status returns DEAD even though
it happens before the worker thread writes DEAD to it. De-
spite this imperfection, value determinism has proven ef-
fective in debugging [3] for two reasons. First, it ensures
that program output, and hence most operator-visible fail-
ures such as assertion failures, crashes, core dumps, and file
corruption, are reproduced. Second, within each thread, it
provides memory-access values consistent with the failure,
hence helping developers to trace the chain of causality from
the failure to its root cause.

The key challenge of building a value-deterministic replay
system is in reproducing data-race values. Data-races are
often benign and intentionally introduced to improve per-
formance. Sometimes they are inadvertent and result in
software failures. Regardless of whether data-races are be-
nign or not, reproducing their values is critical. Data-race
non-determinism causes replay execution to diverge from the
original, hence preventing down-stream errors, concurrency-
related or otherwise, from being reproduced. Figure 2(d)
shows how a benign data-race can mask a null-pointer deref-
erence bug in the code in Figure 1. There, the master thread
does not dereference the null-pointer reaped during replay
because it reads status before the worker writes it. Conse-
quently, the execution does not crash like the original.

Several value-deterministic systems address the data-race
divergence problem, but they fall short of our requirements.
For instance, content-based systems record and replay the
values of shared-memory accesses and, in the process, those
of racing accesses [3]. They can be implemented entirely in
software and can replay all output-failures, but incur high
record-mode overheads (e.g., 5x slowdown [3]). Order-based
replay systems record and replay the ordering of shared-
memory accesses. They provide low record-overhead at the
software-level, but only for programs with limited false shar-
ing [5] or no data-races [21]. Finally, hardware-assisted sys-
tems can replay data-races at very low record-mode costs,
but require non-commodity hardware [10,17,18].

(a) Original (b) Value-deterministic (c) Output-deterministic (d) Non-deterministic
2.1 r1 = DIE 2.1 r1 = DIE 2.1 r1 = END 2.1 r1 = DIE

2.2 if (DIE...) 2.2 if (DIE...) 2.2 if (END...) 2.2 if (DIE...)

2.3 status = DEAD 1.1 r0 = DEAD 1.1 r0 = DEAD 1.1 r0 = ALIVE

1.1 r0 = DEAD 2.3 status = DEAD 2.3 status = DEAD 2.3 status = DEAD

1.2 if (DEAD...) 1.2 if (DEAD...) 1.2 if (DEAD...) 1.2 if (ALIVE...)

1.3 *reaped++ 1.3 *reaped++ 1.3 *reaped++

Segmentation fault Segmentation fault Segmentation fault no output
Figure 2: The totally-ordered execution trace and output of (a) the original run and (b-d) various replay runs of the code in Figure 1.
Each replay trace showcases a different determinism guarantee.

4. OVERVIEW
In this section, we present an overview of our approach to

the output-failure replay problem. In Section 4.1, we present
output determinism, the concept underlying our approach.
Then we introduce key definitions in Section 4.2, followed by
the central building block of our approach, Deterministic-
Run Inference, in Section 4.3. In Section 4.4, we discuss the
design space and trade-offs of our approach and finally, in
Section 4.5, we identify the design points we evaluate in this
paper.

4.1 Output Determinism
To address the output-failure replay problem we use out-

put determinism. Output determinism dictates that the re-
play run outputs the same values as the original run. We
define output as program values sent to devices such as the
screen, network, or disk. Figure 2(c) gives an example of an
output deterministic run of the code in Figure 1. The run is
output deterministic because it outputs the string Segmen-

tation fault to the screen just like the original run.
Output determinism is weaker than value determinism:

it makes no guarantees about non-output properties of the
original run. For instance, output determinism does not
guarantee that the replay run will read and write the same
values as the original. As an example, the output-determin-
istic trace in Figure 2(c) reads END for the input while the
original trace, shown in Figure 2(a), reads DIE. Moreover,
output determinism does not guarantee that the replay run
will take the same path as the original run.

Despite its imperfections, we argue that output deter-
minism is effective for debugging purposes, for two reasons.
First, output determinism ensures that output-visible fail-
ures, such as assertion failures, crashes, core dumps, and file
corruption, are reproduced. For example, the output de-
terministic run in Figure 2(c) produces a crash just like the
original run. Second, it provides memory-access values that,
although may differ from the original values, are nonetheless
consistent with the failure. For example, we can tell that the
master segfaults because the read of status returns DEAD,
and that in turn was caused by the worker writing DEAD to
the same variable.

The chief benefit of output determinism over value deter-
minism is that it does not require the values of data races to
be the same as the original values. In fact, by shifting the
focus of determinism to outputs rather than values, output
determinism enables us to circumvent the need to record and
replay data-races altogether. Without the need to reproduce
data-race values, we are freed from the tradeoffs that encum-
ber traditional replay systems. The result, as we detail in the
following sections, is ODR–an Output-Deterministic Replay
system that meets all the requirements given in Section 2.

4.2 Definitions
In this section, we define key terms used in the remainder

of the paper.
A program is a set of instruction-sequences, one for each

thread, consisting of four key instruction types. A read-
/write instruction reads/writes a byte from/to a memory
location. The input instruction accepts a byte-value arriving
from an input device (e.g., the keyboard) into a register. The
output instruction prints a byte-value to an output device
(e.g., screen) from a register. A conditional branch jumps
to a program location iff its register parameter is non-zero.
This simple program model assumes that hardware inter-
rupts, if desired, are explicitly programmed as an input and
a conditional branch to a handler, done at every instruction.

A run or execution of a program is a finite sequence of
program states, where each state is a mapping from mem-
ory and register locations to values. The first state of a run
maps all locations to 0. Each subsequent state is derived by
executing instructions, chosen in program order from each
thread’s instruction sequence, one at a time and interleaved
in some total order. The content of these subsequent states
are a function of previous states, with two exceptions: the
values returned by memory read instructions are some func-
tion of previous states and the underlying machine’s mem-
ory consistency model, and the values returned by input
instructions are arbitrary (e.g., user-provided). Finally, the
last state of a run is that immediately following the last
available instruction from the sequence of either thread.

A run’s determinant is a triple that uniquely character-
izes the run. This triple consists of a schedule-trace, input-
trace, and a read-trace. A program schedule-trace is a fi-
nite sequence of thread identifiers that specifies the ordering
in which instructions from different threads are interleaved
(i.e., a total-ordering). An input-trace is a finite sequence of
bytes consumed by input instructions. And a read-trace is
a finite sequence of bytes returned by read instructions. For
example, Figure 2(b) shows a run-trace with schedule-trace
(2, 2, 1, 2, 1, 1), input-trace (DIE), and read-trace (DEAD, 0),
where r0 reads DEAD, and *reaped reads 0. Figure 2(c)
shows another run-trace with the same schedule and read
trace, but consuming a different input-trace, (END).

A run and its determinant are equivalent in the sense that
either can be derived from the other. Given a determinant,
one can instantiate a run (a sequence of states), by (1)
executing instructions in the interleaving specified by the
schedule-trace, (2) substituting the value at the i-th input-
trace position for the i-th input instruction’s return value,
and (3) substituting the value at the j-th read-trace posi-
tion for the j-th read instruction’s return value. The reverse
transformation, decomposition, is straightforward.

Figure 3: ODR uses Deterministic-Run Inference (dri) to com-
pute the determinant of an output-deterministic run. The deter-
minant, which includes the values of data-races, is then used to
instantiate future program runs.

We say that a run or determinant is M-consistent iff its
read-trace is in the set of all possible read-traces for the run
or determinant’s schedule-trace, input-trace, and memory
consistency model M . For example, the run in Figure 2(a)
is strict-consistent because the values returned by its reads
are that of the most-recent write for the given schedule-
trace and input-trace. Weaker consistency models may have
multiple valid read-traces, and hence consistent runs, for a
given schedule and input trace. To simplify our presentation,
we assume that the original run is strict-consistent. We omit
a run’s consistency model qualifier when consistency is clear
from context.

4.3 Deterministic-Run Inference
The central challenge in building ODR is that of reproduc-

ing the original output without knowing the entire read-
trace, i.e., without knowing the outcomes of data races. To
address this challenge, ODR employs Deterministic-Run In-
ference (dri) – a method that returns the determinant of
an output-deterministic run. Figure 3 shows how ODR uses
dri. ODR records information about the original run and then
gives it to dri in the form of a query. Minimally, the query
contains the original output. dri then returns a determinant
that ODR uses to quickly instantiate an output-deterministic
run.

In its simplest form, dri searches the space of all strict-
consistent runs and returns the determinant of the first out-
put-deterministic run it finds. Conceptually, it works it-
eratively in two steps. In the first step, dri selects a run
from the space of all runs. In the second step, dri com-
pares the output of the chosen run to that of the original.
If they match, then the search terminates; dri has found
an output-deterministic run. If they do not match, then dri

repeats the first step and selects another run. At some point
dri terminates, since the space of strict-consistent runs con-
tains at least one output-deterministic run – the original
run. Figure 4(a) gives possible first and last iterations of
dri with respect to the original run in Figure 2(a). Here, we
assume that the order in which dri explores the run space
is arbitrary. Note that the run space may contain multiple
output-deterministic runs, in which case dri will select the
first one it finds. In the example, the selected run is different
from the original run, as r1 reads value END, instead of DIE.

An exhaustive search of program runs is intractable for all
but the simplest of programs. To make the search tractable,
dri employs two techniques. The first is to direct the search
toward runs that share the same properties as the original
run. Figure 4(b) shows an example illustrating this idea at
its extreme. In this case, dri considers only those runs with
the same schedule, input, and read trace as the original run.

The benefit of directed search is that it enables dri to prune
vast portions of the search space. In Figure 4(b), for exam-
ple, knowledge of the original run’s schedule, input, and read
trace allows dri to converge on an output-deterministic run
after exploring just one run.

The second technique is to relax the memory-consistency
of all runs in the run space. In general, a weaker consis-
tency model permits more runs matching the original’s out-
put (than a stronger model), hence enabling dri to find such
a run with less effort.

To see the benefit, Figure 5 shows two output-determinis-
tic runs for the strict and the hypothetical null consistency
memory models. Strict consistency, the strongest consis-
tency model we consider, guarantees that reads will return
the value of the most-recent write in schedule order. Null
consistency, the weakest consistency model we consider, ma-
kes no guarantees on the value a read may return – it may
be completely arbitrary. For example, in Figure 5(b), thread
1 reads DEAD for status even though thread 2 never wrote
DEAD to it.

To find a strict-consistent output-deterministic run, dri

may have to search all possible schedules in the worst case.
But under null-consistency, dri needs to search only along
one arbitrary selected schedule. After all, there must exist a
null-consistent run that reads the same values as the original
for any given schedule.

Although relaxing the consistency model reduces the num-
ber of search iterations, there is a drawback: it becomes
harder for a developer to track the cause of a bug, especially
across multiple threads.

4.4 Design Space
The challenge in designing dri is to determine just how

much to direct the search and relax memory consistency. In
conjunction with our basic approach of search, these ques-
tions open the door to an uncharted inference design space.
In this section, we describe this space and in the next section
we identify our targets within it.

Figure 6 shows the three-dimensional design space for dri.
The first dimension in this space is search-complexity. It
measures how long it takes dri to find an output deterministic
run. The second design dimension, query-size, measures the
amount of original run information used to direct the search.
The third dimension, memory-inconsistency, captures the
degree to which the memory consistency of the inferred run
has been relaxed.

The most desirable search-complexity is polynomial search
complexity. It can be achieved by making substantial sac-
rifices in other dimensions, e.g., recording more information
during the original run, or using a weaker consistency model.
The least desirable search-complexity is exponential search
complexity. An exhaustive search can accomplish this, but
at the cost of developer patience. The benefit is extremely
low-overhead recording and ease-of-debugging due to a small
query-size and low memory-inconsistency, respectively.

The smallest and most desirable query-size is that of a
query with just the original outputs. The largest and least
desirable query-size is that of a query with all of a run’s
determinant–the schedule, input, and read trace. The lat-
ter results in constant-time search-complexity but carries a
penalty of large record-mode slowdown. For instance, cap-
turing a read-trace may result in a 5x penalty or worse on
modern commodity machines [3].

(a) Exhaustive search (b) Query-directed search
1st iteration last iteration 1st & last iteration

2.1 r1 = REQ 2.1 r1 = END 2.1 r1 = DIE

2.2 if (REQ...) 2.2 if (END...) 2.2 if (DIE...)

1.1 r0 = ALIVE 2.3 status = DEAD 2.3 status = DEAD

1.2 if (ALIVE...) 1.1 r0 = DEAD 1.1 r0 = DEAD

1.2 if (DEAD...) 1.2 if (DEAD...)

1.3 *reaped++ 1.3 *reaped++

No output Segmentation fault Segmentation fault

Figure 4: Possible first and last iterations of dri using exhaustive search (a) of all strict-consistent runs, and (b) of strict-consistent runs
with the original schedule, input, and read trace, all from the original run given in Figure 2(a). dri converges in an exponential number
of iterations for case (a), and in just one iteration for case (b) since the full determinant is provided.

As discussed above, lowering consistency requirements re-
sults in substantial search-space reductions, but makes it
harder to track causality across threads during debugging.

4.5 Design Targets
In this paper, we evaluate two points in the dri design

space: Search-Intensive DRI (si-dri) and Query-Intensive
DRI (qi-dri).

si-dri strives for a practical compromise among the ex-
tremities of the dri design space. Specifically, si-dri tar-
gets polynomial search-complexity for several applications,
though not all – a goal we refer to as poly in practice. Our
results in Section 9 indicate that polynomial complexity
holds for several real-world applications. si-dri also tar-
gets a query-size that, while larger than a query with just
the outputs, is still small enough to be useful for at least
periodic production use. Finally, si-dri relaxes the memory
consistency model of the inferred run from strict consistency
to the hypothetical lock-order consistency, a slightly weaker
model in which only the runs of data-race free programs are
guaranteed to be strict-consistent.

The second design point we evaluate, Query-Intensive DRI,
is almost identical to Search-Intensive DRI. The key differ-
ence is that qi-dri calls for a query containing the original
branch-trace of all threads–considerably more information
than required by si-dri. Meeting this query requirement in-
flates recording overhead, but results in polynomial search-
complexity, independent of application.

5. Search-Intensive DRI
In this section, we present Search-Intensive DRI (si-dri),

one inference method with which we evaluate ODR. We begin
with an overview of what si-dri does. Then we present

(a) Strict consistency (b) Null consistency

2.1 r1 = DIE 2.1 r1 = REQ

2.2 if (DIE...) 2.2 if (REQ...)

2.3 status = DEAD 1.1 r0 = DEAD

1.1 r0 = DEAD 1.2 if (DEAD...)

1.2 if (DEAD...) 1.3 *reaped++

1.3 *reaped++

Segmentation fault Segmentation fault

Figure 5: Possible last iterations of dri on the space of runs
for the strongest and weakest consistency models we consider.
The null consistency model, the weakest, enables dri to ignore
scheduling order of all accesses, and hence converge faster than
strict consistency.

Figure 6: The design space for dri. Exhaustive search is in-
tractable, but providing more information in the query or relaxing
consistency can make it tractable.

a bare-bones version of its algorithm (called core si-dri).
Finally, we apply directed search and consistency relaxation
to this core algorithm to yield si-dri, the finished product.

5.1 Overview
si-dri accepts a query and produces the determinant of

an output-deterministic run, like any variant of dri.
In addition to the output-trace, a si-dri query must con-

tain three other pieces of information from the original run:

• input-trace, a finite sequence of bytes consumed by the
input instructions of the original run.

• lock-order, a total ordering of lock instructions exe-
cuted in the original run. Each item in the sequence
is a (t, c)-pair where t is the thread index and c is the
lock instruction count. For example, (1, 4) denotes a
lock that was executed as the 4th instruction of thread
1. The lock-order sequence induces a partial ordering
on the program instructions. For instance, sequence
((1, 4), (2, 2), (1, 10)) captures the fact that the 4th in-
struction of thread 1 is executed before the 2nd in-
struction of thread 2, which in turn is executed before
the 10th instruction on thread 1.

• path-sample, a sampling of instructions executed in the
original run. Each instruction in the path-sample is
represented by a (t, c, l)-tuple, where t is the thread
index, c is the instruction count, and l is the program
location of that instruction. The path-sample includes

(a) LOR-consistent run 1 (b) LOR-consistent run 2

2.1 r1 = DIE 2.1 r1 = DIE

2.2 if (DIE...) 2.2 if (DIE...)

1.1 r0 = ALIVE 1.1 r0 = DEAD

2.3 status = DEAD 2.3 status = DEAD

1.2 if (ALIVE...) 1.2 if (DEAD...)

1.3 *reaped++

Segmentation fault

Figure 7: The set of all lock-order (LOR) consistent runs for
the schedule (2,2,1,2,1,1) and input DIE. Since the runs’ schedule
is lock-order conformant with the original lock order (see Fig-
ure 1(a)), at least one is guaranteed to be output-deterministic.

one such tuple for each input, output, and lock instruc-
tion executed in the original run.

Section 5.3 details how si-dri leverages this query informa-
tion.

si-dri produces an output-deterministic run conforming
to the hypothetical lock-order consistency (LOR) memory
model. Intuitively, a read in this model may return either
the value of the most-recently-scheduled write to the same
memory location or the value of any racing write. We say
that two accesses race if they both access the same location
and neither access happens before the other according to the
lock-order of the run. Figure 7 shows two LOR-consistent
runs. Since the example has no locks, the read and write of
status are trivially unordered by the lock-order and there-
fore race. Under lock-order consistency, a read may return
the value of a racing write even if that write is scheduled
after the read, as with the read of status in Figure 7(b); r0
reads DEAD before this value is written at instruction 2.3.
Section 5.4 details how si-dri leverages this relaxed memory
model.

5.2 Core Algorithm
The core si-dri search algorithm, depicted in Figure 8,

performs an exhaustive depth-first search on the space of
strict-consistent determinants. Since the space may be in-
finite in size (due to program loops), si-dri searches only
determinants of length n. The n denotes the length of the
original run, which we assume is in the original output. The
search is performed iteratively and in four steps.

In the first step, schedule-select, si-dri selects an n-length
schedule-trace from the space of all n-length schedule-traces.
In the second step, input-select, si-dri selects an n-length
input-trace from the space of all n-length input-traces. In
the third step, read trace-set selection, si-dri produces the
set of all valid n-length read-traces for the previously se-
lected schedule-trace, input-trace, and target memory model.
In the final step, output matching, si-dri conceptually runs
the program for every read-trace in the read-trace set pro-
duced in the previous stage to see if any produce the original
output.

If the run produces the same output as the original run,
then the search terminates, and si-dri returns the deter-
minant of that run. If the run does not produce the same
output, then si-dri continues the search. For the next search
iteration, si-dri will choose a different input-trace, if there
are any unexplored in the input-trace space. Otherwise, si-

dri will choose a different schedule-trace, if there are any

unexplored in the schedule-trace space. The search will ter-
minate before all schedules are exhausted because there ex-
ists some iteration in which si-dri selects the original run’s
schedule, input, and read trace.

5.3 Query-Directed Search
si-dri leverages query information to reduce the space of

determinants using a technique we term query-guidance. si-

dri uses three different types of query-guidance methods,
each corresponding to a selection stage, as depicted in Fig-
ure 9.

The first guidance-method is lock-order guidance, used
in the schedule-selection stage. Lock-order guidance uses
the lock-order given in the query to generate a schedule-
trace of length n that conforms to it. By considering only
such schedule-traces, lock-order guidance avoids searching
all schedules as done in the core algorithm.

The second guidance-method is input-trace guidance, used
in the input-selection stage. Input guidance simply repro-
duces the original input-trace found in the query. It does not
have much work to do because all of the input is given in the
query. Input guidance provides an exponential reduction of
the input-space.

The third guidance-method is read trace-set guidance, used
in the read trace-set selection stage. Read trace-set guid-
ance chooses read-traces that are more likely to result in
output-deterministic runs. To do this, it leverages the
schedule-trace and input-trace chosen in previous stages,
and the path-sample provided in the query. This stage is
the most complicated and is detailed in Section 6.2.

5.4 Relaxed Consistency Reduction
The key observation behind si-dri’s consistency relax-

ation is that, to find an output-deterministic run under LOR-
consistency, we need only consider LOR-consistent runs con-
forming to one schedule. The only restriction on the se-
lected schedule is that it must be lock-order conformant,
a restriction which is satisfied by si-dri’s lock-order guid-
ance. Figure 7 shows all LOR-consistent runs for an arbi-
trarily chosen lock-order conformant schedule. At least one
is output-deterministic.

It suffices to consider any lock-order conformant schedule
S′ because for any such schedule, there exists an input and
LOR-consistent read-trace that produces the original out-
put. This holds because given the original schedule S, in-
put, and read-trace, which is by definition a LOR-consistent
run, we can construct another LOR-consistent read-trace
that when used in conjunction with schedule S′ and origi-
nal input, produces the original output. We omit a formal
proof of this, but the intuition is that one can rearrange
the read-values of concurrent-reads in the read-trace of S to
yield the read-trace of S′. For example, the read-trace of
Figure 2(a) and Figure 7(b) are both (DEAD, 0)–a trivial
rearrangement.

6. STAGES IN DETAIL
In this section, we detail the operation of the read-trace

select and output-matching stages. But first, we provide
definitions of terms used throughout the section.

6.1 Definitions
The path of a multi-threaded program is a sequence of

thread-paths, one for each thread, in ascending thread index

Figure 8: The core Search-Intensive DRI algorithm exhaustively searches the space of n-length, strict-consistent determinants for one
that, when instantiated, outputs the same values as the original run. It makes use of only the original outputs in the query and
consequently has exponential search-complexity.

Figure 9: The Search-Intensive DRI algorithm with (dashed and solid) just query-guidance methods applied and (just solid) with both
query-guidance and consistency relaxation applied. Consistency relaxation eliminates the need to search multiple schedules.

Figure 10: Read trace-set guidance up close. The goal is to con-
sider only those read-traces that conform to the selected schedule-
trace, input-trace, and a small set of potentially output-inducing
paths.

order. The thread-path of a thread is a sequence of instruc-
tion locations executed by the thread. For example, path
((1, 2), (1, 3)) denotes the fact that there are two threads,
where thread 0 executes the instruction at location 1 first
and then the one at location 2, while thread 1 executes the
instruction at location 1 first, and then the one at location
3.

6.2 Read Trace-Set Guidance
The idea behind read trace-set guidance is to focus the

search on path-deterministic read-traces – those read-traces
that when instantiated along with the selected schedule and
input trace, result in a run that takes the original path.
Searching this set is sufficient to yield an output-determin-
istic run because the original run is trivially part of this set.

The key challenge of read trace-set guidance is that the

original path is not known in its entirety; the si-dri query
contains only a sample of the original path. To address
this challenge, we conservatively broaden the read trace-
set search space. Specifically, we search the set of possi-
ble path-deterministic trace-sets. When instantiated with
the selected schedule and input trace, the possible trace-set
yields a superset of path-deterministic runs. While search-
ing this superset is not as efficient as searching the set of
path-deterministic runs, it is in practice more efficient than
searching the set of all paths.

Figure 10 shows the two stages of read trace-set guid-
ance. The first stage, path-select, computes a set of paths in
which at least one member is the original path, henceforth
called a path-set. Path-select performs this computation us-
ing the provided schedule and input-trace, and original path-
sample. We detail path-select’s operation in Section 6.2.1.
The second stage, FormGen, computes a logical formula that
represents the set of possible path-deterministic read-traces
that describe a LOR-consistent run, based on the previously
selected path-set, schedule-trace, and input-trace.

6.2.1 Path Select

Path-selection generates a set of paths that are path-temp-
late conformant. We say that a path is path-template con-
formant if it can be generated from some run of the program
along the provided (1) schedule-trace, (2) input-trace, and
(3) path-sample–collectively called the path-template.

The set of path-template conformant paths is a valid path-
set, since the original path is a member. Indeed, under

LOR-consistency, the original path can be obtained in some
run of the program along the provided input and schedule
trace. The set of path-template conformant paths is rel-
atively small, so the resulting path-set will also be small.
Specifically, the size of the set is exponential only in the
number of data-races. In the special case of data-race free
execution, for example, the set has only one path – the orig-
inal path. Without data-races, LOR-consistency guarantees
that the input and schedule trace completely determine the
program path.

Algorithm 1 Path-select(T, P). Returns a path-
template conformant path (i.e., a path that may be that
of the original run).

Require: Path template T = (I, L, S), where I is an input-
trace, L is a schedule-trace, and S is a path sample, all
from the original run

Require: A candidate path P , initially empty
Ensure: Path C is path-template conformant

P ′, conformant = Is-conformant-run(I, L, S, P)
if conformant then

return P ′

else

for all unvisited (t, c) ∈ Rtb-oracle(I, L, S, P ′) do

C = Path-select(T,Flip-branch(P ′, (t, c)))
if C 6= nil then

return C

return nil

To obtain path-template conformant paths, the path-sel-
ect stage repeatedly invokes path-select–the path-selec-
tion algorithm in Algorithm 1. path-select explores a
super-set of all path-template conformant paths and returns
the first path-template conformant path it finds that has
not already been returned in a previous invocation. If all
conformant paths have been returned then the algorithm
returns nil. Our results in Section 9 show that, in prac-
tice, path-select often identifies the original path after just
one invocation.

To identify a path-template conformant path, path-select

runs the program on the given schedule-trace, input-trace,
and a candidate path (if not empty), and checks it for path-
template conformance. The running and checking is done by
the is-conformant-run subroutine, which returns a con-
formant path and true if the run passes the conformance
check. If a run does not pass the conformance check, for
example because it did not match the path-sample, then
is-conformant-run immediately terminates the run, and
returns the failed path and false. As our results in Section 9
show, the latter is likely to happen soon after the run di-
verges (i.e., does not pass the conformance check) from the
original path.

If a run diverges, then path-select backtracks to the
most-recent race-tainted branch (RTB), in depth-first search
style, and forces the run down the previously unexplored
branch (done by flip-branch). The motivation for back-
tracking to an RTB is simple: an RTB may evaluate either
way, depending on the outcome of the race influencing it,
and hence is likely to be the cause of divergence. Race-
tainted indirect branches (e.g., due to function pointers) are
trickier to handle efficiently because, at the extreme, they
may branch to an arbitrary memory location. In this paper,
we ignore race-tainted indirect branches. Note, however,

that they are rare in practice; we have never encountered
them in our experiments.

To identify RTBs, path-select invokes an rtb-oracle.
The oracle returns the set of static branches that may have
been affected by race-outcomes in some run of the program
along the given program schedule-trace, input-trace, and
failed path. In path-select, this branch super-set is de-
noted by a set of (t, c)-tuples, where t and c are the thread
index and instruction count, respectively, of an RTB. Briefly,
the rtb-oracle works in two stages to identify RTBs. In
the first stage, it invokes a race-oracle (Section 6.2.3) to
identify a set of racing accesses along the given schedule and
input trace, and failed path. In the second stage, it performs
a conservative taint-flow analysis of all runs along the given
schedule and input trace, and failed path. We provide more
details of the rtb-oracle in [1].

6.2.2 Formula Generation

The goal of FormGen is to produce a quantifier-free, first-
order logic formula that represents a set of read-traces. The
symbolic variables of this formula represent read-values of
instructions executed along each path in the path-set. Con-
straints within the formula limit the values that each sym-
bolic read-value may take on. The set of all concrete read-
traces represented by this formula, then, is the set of all
constraint-satisfying assignments for symbolic variables.

The formula produced by FormGen must meet two re-
quirements. First, a satisfying read-trace for the formula
must result in a run that takes a path in the given path-set,
when instantiated with the given schedule and input-trace.
To meet this requirement, FormGen employs symbolic exe-
cution [12]–a method for deriving a formula representing the
set of all read-traces along a given path. FormGen symbol-
ically executes the program along each path in the path-set
and outputs the disjunction of all per-path formulas. For
further details of symbolic execution, we refer the reader
to [4].

The second formula requirement is that a satisfying read-
trace, when instantiated along with a given schedule and
input trace, must result in a LOR-consistent run. Meeting
this requirement is challenging because determining whether
a read-trace is LOR-consistent or not requires that we know
which reads may race and what values those racing reads
may return. To address this challenge, FormGen relies on
a race oracle. We describe the oracle in Section 6.2.3, but
here it suffices to know that FormGen invokes the oracle to
determine if an instruction races and then constrains the cor-
responding symbolic read-value to the possible read-values
reported by the oracle.

6.2.3 Race Oracle

We have built a race-oracle in the form of a static race
detector. In this section, we provide a specification of the
detector, but elide operational details. The interested reader
may find these details in [1].

The fundamental soundness requirement of the detector
is that it returns a superset of Races(E) – the set of memory
access instructions that race in E, where E is the set of runs
that conform to a given lock-order, input-trace, and pro-
gram path. If it does not report all races in Races(E), then
path-select (Section 6.2.1) will miss backtracking points,
in turn rendering path-selection unable to find a valid path-
set. Moreover, missed races will break formula gener-

ation; the formula may not describe the complete set of
path-deterministic read-traces. Consequently, the output-
matching phase may fail.

The detector should also have high precision, meaning
that it reports few races other than those in Races(E). Im-
precision has two consequences. The first is performance.
Specifically, path-select may have to explore more paths
before converging as a result of the rtb-oracle identifying
false RTBs. Recall that it relies on the race oracle. The sec-
ond consequence is some loss of memory-consistency. That
is, si-dri’s consistency relaxation will be applied, unneces-
sarily, to reads that could never race in E. This in turn
increases the likelihood the read will return the value of a
subsequently scheduled write, potentially confusing the de-
veloper during debugging.

6.3 Output Matching
To determine if a selected schedule, input, and read-trace

set is output-deterministic, we could instantiate a run for
each selected schedule, input and read-trace in the read-
trace set, and then check the outputs. But instantiation
is costly; we would have to execute the program along each
such determinant. Instead, the output matching stage lever-
ages a formula solver to conceptually perform this running
and checking of outputs without actually instantiating a run.

Output matching works in two steps. In the first step, we
augment the formula generated in the previous phase (For-
mGen) with constraints that further limit the set of read-
traces to those that produce the original output. In the
second step, we dispatch the augmented formula to STP [4]–
a constraint solver that, in the domain of software-analysis,
can often find a satisfying assignment to an input formula in
polynomial time. If there is a satisfying solution, then the
solver reports one possible assignment of read values (i.e.,
produces a read-trace).

7. Query-Intensive DRI
In addition to si-dri, we evaluate another dri variant

called Query-Intensive DRI (qi-dri). The only difference
between si-dri and qi-dri is that the latter requires a query
path-sample with many samples. Specifically, it calls for
one sampling point for every instruction following a branch
in the original run, in effect encoding the original run’s path.
While this additional information increases the recording
overhead, it leads to a significant reduction of inference time.
This is to be expected since knowledge of all branch out-
comes enables our path selection algorithm (path-select,
Section 6.2.1) to recover from any divergence in just one
backtrack. In practice, knowledge of the original run’s path
precludes the need to even invoke path-select, hence pro-
viding an exponential reduction of the search-space.

8. IMPLEMENTATION
We implemented ODR as a lightweight user-level middle-

ware layer for Linux/x86 applications. It consists of approx-
imately 100,000 lines of C code and 2,000 lines of x86 assem-
bly. The replay core accounts for 45% of the code base. The
other code comes from Catchconv [16] and LibVEX [19], an
open-source symbolic execution tool and binary translator,
respectively. We encountered many challenges when devel-
oping ODR. In this section we describe the key challenges
most relevant to our inference method.

8.1 Tracing Inputs and Outputs
The primary challenge of user-level I/O tracing is in achiev-

ing completeness. The user-kernel interface is large; we had
to implement about 200 system calls before ODR logged and
replayed sophisticated applications like the Java Virtual Ma-
chine. Some of these system calls, such as sys_gettime-

ofday(), were easy to handle; ODR just records their return
values. But many others such as sys_kill(), sys_clone(),
sys_futex(), sys_open(), and sys_mmap() required more
extensive emulation work, largely to ensure deterministic
signal delivery, task creation and synchronization, task/file
identifiers, file/socket access, and memory management, re-
spectively.

A secondary challenge is that of intercepting I/O events.
There are many ways to do it, for instance via sys_ptrace().
But we found that a small degree of custom kernel support
was necessary to achieve efficiency and completeness. Specif-
ically, we employ a kernel module that generates a signal
on every system call and non-deterministic x86 instruction
(e.g., RDTSC, IN, etc.) that ODR then catches and handles.
DMA is an important I/O source, but we ignore it in the
current implementation without penalty for most user-level
applications.

8.2 Tracing Lock-Order
Several of our search-space reductions rely on the original

run’s lock-order. We intercept locks using binary-patching
techniques. Specifically, we dynamically replace instruc-
tions that acquire and release the system bus lock with calls
into tracing code. The tracing code, once invoked, emu-
lates the memory operation. It also logs the value of a
per-thread Lamport clock [14] for the acquire operation pre-
ceding the memory operation and increments the Lamport
clock for the subsequent release operation. We could have
intercepted lock-order at the library level (e.g., by instru-
menting pthread_mutex_lock()), but then we would miss
inlined and custom synchronization routines that are com-
mon in libc, which in turn would result in a larger schedule-
trace search space.

8.3 Tracing Branches
qi-dri requires a branch-trace, as discussed in Section 7.

ODR captures branches in software using the Pin binary in-
strumentation tool [15]. Software binary translation incurs
some overhead, but it is faster or more flexible than the alter-
natives (e.g., LibVEX or x86 hardware branch tracing [11]).
To obtain low logging overhead, we employ an idealized,
software-only 2-level/BTB branch predictor [9] to compress
the branch trace on the fly. Since this idealized predictor
is deterministic given the same branch history, compression
is achieved by logging only the branch mispredictions. The
number of mispredictions for this class of well-studied pre-
dictors is known to be low.

8.4 Formula Generation
There are two key challenges in generating a formula.

First, we must do so at the instruction level on Linux/x86.
Using source code can make this problem easier [4], but
would hinder ODR’s goal of working with arbitrary programs.
Second, the generated formulas must be small in size. Oth-
erwise, the constraint solver may not be able to solve them
in a reasonable amount of time.

To address these challenges, our formula generator lever-
ages the Catchconv [16] symbolic execution tool. Catchconv
addresses the first challenge by producing instruction-level
constraints on Linux/x86. Catchconv addresses the second
challenge by generating a formula with size proportional
only to the number of instructions tainted (i.e., whose pa-
rameters are influenced) by symbolic variables, as opposed
to the total number of instructions. Since symbolic variables
in our problem domain represent racing reads, and because
racing reads have little influence on instructions (as verified
by our evaluation), the resulting formulas are very small.

9. PERFORMANCE
In this section, we evaluate ODR under two configurations–

one in which it uses si-dri and the other in which it uses
qi-dri. We begin with our experimental setup and then
give results for each major ODR phase: record, inference, and
replay. In summary, we found that when using si-dri, ODR
incurs low recording overhead (less than 1.6x on average),
but impractically high inference times. For instance, two
applications in our suite took more than 24 hours during
the inference phase. In contrast, ODR with qi-dri incurs
significantly higher recording overhead (between 3.5x and
5.5x slowdown of the original run). But the inference phase
finished within 24 hours for all applications. Thus, si-dri

and qi-dri represent opposites on the record-inference plane
of the dri tradeoff space.

9.1 Setup
We evaluate seven parallel applications: radix, lu, and

water-spatial from the Splash2 suite [23], the Apache web-
server (apache), the Mysql database server (mysql), the Hot-
spot Java Virtual Machine running the Tomcat webserver
(java), and a parallel build of the Linux kernel (make-j2).
We do not give results for the entire Splash2 suite because
some (e.g, FMM) generate floating point constraints, which
our current implementation does not support (see Section 10).
Henceforth, we refer to the Splash2 applications as SP2 apps
and the others as systems apps.

All inputs were selected such that the program ran for just
2 seconds. This ensured that inference experiments were
timely. Apache and java were run with a web-crawler that
downloads files at 100KBps using 8 concurrent client connec-
tions. Mysql was run with a client that queries at 100KBps,
also using 8 concurrent client connections. The Linux build
was performed with two concurrent jobs (make-j2).

Our experimental procedure consisted of a warmup run
followed by 6 trials. We report the average numbers of these
6 trials. The standard deviation of the trials was within
three percent. All experiments were conducted on a two-
core Dell Dimension workstation with a Pentium D proces-
sor running at 2.0GHz and 2GB of RAM. The OS used was
Debian 5 with a 2.6.29 Linux kernel with minor patches to
support ODR’s interpositioning hooks.

9.2 si-dri Record Mode
Figure 11 shows the record-mode slowdowns when using

si-dri. The slowdown is broken down into five parts: (1) Ex-
ecution, the cost of executing the application without any
tracing or interpositioning; (2) Path-sample trace, the cost of
intercepting and writing path-samples (Section 5) to the log
file; (3) I/O trace, the cost of intercepting and writing both
program input and output to a log file; (4) Lock trace, the

Emulation
Lock trace
I/O trace
Path−sample trace

Execution

 0x

 1x

 2x

 3x

 4x

 5x

 6x

S
I

Q
I

S
I

Q
I

S
I

Q
I

S
I

Q
I

S
I

Q
I

S
I

Q
I

S
I

Q
I

S
lo

w
d

o
w

n

Application

Record runtime (2 cores)

apache java make−j2 mysql radix lu water−spat

Figure 11: ODR’s record-mode runtimes, normalized with native
application execution time, for both si-dri and qi-dri.

cost of intercepting bus-lock instructions and writing logical
clocks to the log file at each such instruction; (5) Emulation,
the cost of emulating some syscalls (see Section 8.1).

As shown in Figure 11, the record mode causes a slow-
down of 1.6x on average. ODR outperforms software-only
multiprocessor replay systems on key benchmarks, and is
comparable on several others. For instance, ODR outperforms
SMP-Revirt [5] on make-j2 (by 0.3x) and radix (by 0.1x) for
the 2-processor case. ODR does better because these apps
exhibit lots of false-sharing. False-sharing induces frequent
CREW faults on SMP-ReVirt, but not on ODR since it does
not record races. ODR approaches RecPlay’s [21] performance
(within 0.4x) for the SP2 apps. This is because, with the
exception of outputs and sample points, ODR traces roughly
the same data as RecPlay (though RecPlay captures lock
order at the library level). SP2 apps are not I/O intensive,
so the fact that ODR records the outputs does not have a
significant impact.
ODR does not always outperform existing multiprocessor

replay systems. For instance, in the two-processor case,
SMP-ReVirt and RecPlay achieve near-native performance
on several SP2 apps (e.g., LU), while ODR incurs an average
overhead of 0.5x of SP2 apps. As Figure 11 shows, a bulk of
this overhead is due to lock-tracing, which SMP-ReVirt does
not do. And while RecPlay does trace lock order, it does
so by instrumenting lock routines (in libpthreads) rather
than all locked instructions. Intercepting lock order at the
instruction level is particularly damaging for SP2 app per-
formance because they frequently invoke libpthreads rou-
tines, which in turn issue many locked-instructions. One
might expect the cost of instruction-level lock tracing to be
even higher, but in practice it is small because libpthread

routines do not busy-wait under lock contention – they await
notification in the kernel via a sys_futex. Nevertheless,
these results suggest that library-level lock tracing (as done
in RecPlay) might provide better results.

Compared with hardware-based systems, ODR performs
slightly worse, especially on systems benchmarks. For ex-
ample, CapoOne [18] achieves a 1.1x and 1.6x slowdown
for apache and make-j2, respectively, while ODR achieves a
1.6x and 1.8x slowdown. Based on the breakdown in Fig-
ure 11, we attribute this slowdown to two bottlenecks. The
first, not surprisingly, is output-tracing. The effect of out-
put tracing is particularly visible in the case of apache and

FormGen+FormSolve

Input−select

Schedule−select

Path−select

 0x

 5,000x

 10,000x

 15,000x

 20,000x

 25,000x

 30,000x

 35,000x

 40,000x

ap
ac

h
e

ja
v

a

m
ak

e−
j2

m
y

sq
l

ra
d

ix lu

w
at

er
−

sp
at

S
lo

w
d

o
w

n

Application

Inference runtime

367x timeout 622x timeout

12,398x
8,688x

39,082x

Figure 12: Inference runtime, normalized with native application
execution time, for si-dri. Applications that did not finish in the
first 24 hours are denoted by timeout.

make-j2, which transfer large volumes of data. The second
bottleneck is the emulation. As discussed in Section 8.1,
triggering a signal on each syscall and emulating task and
memory management at user-level can be costly.

9.3 si-dri Inference Mode
Figure 12 gives inference slowdown for each application.

The slowdown is broken down into 4 major si-dri stages:
schedule-select, input-select, path-select, and formula gener-
ation and solving (FormGen+FormSolve). The path-select
and FormGen+FormSolve stages account for a vast major-
ity of the inference time. Since its query does not contain
a path or read-trace, si-dri has to search for them. In con-
trast, schedule-select and input-select are instantaneous due
to consistency relaxation (Section 5.4) and query-directed
search (Section 5.3), respectively.

Overall, si-dri’s inference time is impractically long. Two
applications, java and mysql, do not converge within the 24
hour timeout period, and those that do converge achieve
an average slowdown of 12, 232x. As the breakdown in Fig-
ure 12 shows, there are two bottlenecks. The primary bottle-
neck is path-selection, taking up an average 75% percent of
inference time. In the case of java and mysql, path-selection
takes so long that it prevents ODR from proceeding to the
FormGen+FormSolve within the timeout period (24 hours).
The secondary bottleneck is FormGen+FormSolve, taking
up the remaining average 25% percent of inference time.
We investigate each bottleneck in the following sections.

9.3.1 Path-Selection

We expected path-selection to be the primary cause of si-

dri’s slowdown. After all, si-dri’s path-selection algorithm
(path-select, Section 6.2.1) may backtrack an exponential
number of times. We also expected the cost of each back-
track to play a strong secondary role. To verify these expec-
tations, we counted the number of backtracks and measured
the average cost of a backtracking operation. The results,
shown in Figure 13, contradict our expectations. That is,
the number of backtracks for most apps, with the exception
of java and mysql, is low, hence making the cost of each
backtrack operation the dominant factor.

There are two reasons for the small number of backtracks.
The first, specific to make-j2 and apache, is that there are

is−conformant−run

rtb−oracle

 0x

 100x

 200x

 300x

 400x

 500x

 600x

 700x

ap
ac

h
e

ja
v

a

m
ak

e−
j2

m
y

sq
l

ra
d

ix lu

w
at

er
−

sp
at

S
lo

w
d

o
w

n

Application

Average runtime of a single backtrack

1

>132 0 >137

18 12 59

Figure 13: The average runtime, normalized with native runtime,
of one backtrack performed by si-dri during path-select, broken
down into its two subroutines. The total number of backtracks is
given at the top of each bar. For applications that timeout, this
number is just a lower-bound.

a small number of dynamic races and consequently a small
number of race-tainted branches (RTBs, Section 6.2.1). make-
j2, for instance, does not have any shared-memory races at
user-level, and hence no divergences that induce backtracks.
Most sharing in make-j2 is done via file-system syscalls, the
results of which we log, rather than through user-level shared
memory. Apache, in contrast, does have races and RTBs,
but a very small number of them. Our runs had between 1
and 2 dynamic races, each of which tainted only 1 branch.
Thus, in the worst case, we would have to backtrack 4 times.
The actual number of backtracks is smaller because path-

select guesses some of these RTBs correctly on the first
try.

The second reason for the small number of backtracks
is specific to the SP2 apps. These apps did well despite
having a large number of RTBs (an average of 30) because
path-select was able to resolve all their divergences with
just one backtrack, hence making forward-progress without
exponential search. Only one backtrack was necessary be-
cause, in the code paths taken in our runs, there is a sam-
pling point after every RTB. So if path-select chooses an
RTB outcome that deviates from the original path, then the
following sampling point will be missed, hence triggering an
immediate backtrack to the original path.

Unlike the majority of apps in our suite, java and mysql
have a significantly larger number of backtracks. The large
number stems from code fragments with few sampling points
between RTBs. In those cases, we end up with too many in-
structions between successive sampling points, hence result-
ing in divergences that require a large number of backtracks
to resolve. Consider a loop that contains a race, and no
sampling points. Thus, the earliest point we can detect a
divergence is at the first sampling point after the loop fin-
ishes. Now assume that the loop executes 1,000 times, but
the divergence is caused at the 500-th iteration. In this case,
we need to backtrack 500 times to identify the cause of the
divergence.

Overall, our results indicate that reducing the backtrack-
ing cost is key to attaining practical inference times – 1000
backtracks may be tolerable if each incurs say at most a 2x
slowdown. To identify opportunities for improvement, we
broke down the average backtracking slowdown into its two

FormSolve

FormGen

race−oracle

 0x

 100x

 200x

 300x

 400x

 500x

 600x

 700x

 800x

 900x

ap
ac

h
e

ja
v

a

m
ak

e−
j2

m
y

sq
l

ra
d

ix lu

w
at

er
−

sp
at

S
lo

w
d

o
w

n

Application

FormGen+FormSolve runtime

Figure 14: Runtime of the FormGen and FormSolve phases,
normalized with native runtime, broken down into its three stages.

major parts, shown in Figure 13. The first part is the cost
of invoking the rtb-oracle (Section 6.2.1), needed to intel-
ligently identify backtracking points. The second is the cost
of invoking is-conformant-run (Section 6.2.1), needed to
verify that a selected path is path-template conformant. The
results show that the cost of a backtrack is dominated by the
invocation of the rtb-oracle, as expected. We expected
the rtb-oracle to be expensive because it involves race de-
tection and taint-flow analyses (Section 6.2.1) over the entire
path up till the point of divergence. In theory, the rtb-

oracle need not be run over the entire failed path on every
backtrack, but we leave that to future work.

9.3.2 Formula Generation and Solving

We expected formula generation (FormGen) and solving
(FormSolve) to be slow, especially since FormSolve is an
NP-complete procedure for worst-case computations (e.g.,
hash-functions). To verify this hypothesis, we broke down
the phase’s runtime into three parts, as show in Figure 14.
The first part is the cost of invoking the race-oracle (Sec-
tion 6.2.3), needed to identify which accesses may race. The
second part is FormGen, used to encode a set of candi-
date read-traces as a logic formula. And the third part
is FormSolve, needed to find an output-deterministic read-
trace from the candidate set, which in turn involves invoking
a formula solver. The breakdown contradicted our hypoth-
esis in that most of the inference is spent in the race-oracle
(a polynomial time procedure 6.2.3), not FormGen or Form-
Solve.

FormGen and FormSolve are fast for two reasons. The
first is that our formula generator (Section 6.2.2) generates
formulas only for those instructions influenced (i.e., tainted)
by racing accesses. If the number of influenced instructions
is small, then the resulting formula will be small. Our re-
sults indicate that, for the apps in our suite, races have
limited influence on instructions executed – the average size
of a formula is 1562 constraints. The second reason is that,
of those constraints that were generated, all involved only
linear twos-complement arithmetic. Such constraints are de-
sirable because the constraint solver we use can solve them
in polynomial time [6]. We did not encounter any races that
influenced the inputs of hash functions or other hard non-
linear computations.

FormGen+FormSolve

Input select

Schedule select

Path−select

 0x

 100x

 200x

 300x

 400x

 500x

 600x

 700x

 800x

 900x

ap
ac

h
e

ja
v

a

m
ak

e−
j2

m
y

sq
l

ra
d

ix lu

w
at

er
−

sp
at

S
lo

w
d

o
w

n

Application

Inference runtime

Figure 15: Inference runtime overheads for qi-dri. All applica-
tions finish well within the first 24 hours.

The penalty for efficient constraint generation and solv-
ing is expensive race-detection. Our race-oracle is slow be-
cause it performs set-intersection of all accesses made is
a given path. Because a set may contain millions of ac-
cesses, the process is inherently slow, even with our O(n)
set-intersection algorithm. We refer the reader to [1] for a
more detailed explanation.

9.4 qi-dri Record and Inference Modes
As we have shown so far, si-dri leads to a low recording

overhead, but its inference time is prohibitive. In this sec-
tion, we evaluate qi-dri, which trades recording overhead
for improved inference times. In particular, qi-dri relies on
recording branches during the original run, as explained in
Section 8.3. Recoding branches removes the need to invoke
path-select, the key bottleneck behind the timeouts in si-

dri. Hence the improvements in the inference time.
Figure 11 shows qi-dri’s slowdown factors for recording,

normalized with native execution times. As expected, record-
ing branches significantly increases the overhead, from 1.6x
to 4.5x on average. While this overhead is still 4 times less
than the average overhead of iDNA [3], it is greater than
other software-only approaches, for some apps. Radix, for
example, takes 3 times longer to record on ODR when using
qi-dri than with SMP-ReVirt [5].

Figure 15 shows the inference time for qi-dri normalized
with native execution times. As expected, qi-dri achieves
much lower inference times than si-dri (see Figure 12). The
improvements are due to the fact that qi-dri does not need
to spend time in the path-select sub-stage of read-trace guid-
ance (the most expensive part of si-dri) since the original
path of each thread has been already recorded. In the ab-
sence of path-selection overhead, the FormGen+FormSolve
stage dominates. As explained in Section 9.3.2 and illus-
trated in Figure 14, the largest percentage of time in the
FormGen+FormSolve stage is spent in the race-oracle (Sec-
tion 6.2.3).

9.5 Replay Mode
Figure 16 shows replay runtime, normalized with native

runtime, broken down into the cost of replaying each com-
ponent of the determinant produced by dri.

Read−trace replay

Schedule−trace replay

Input−trace replay

Execution

 0x

 0.2x

 0.4x

 0.6x

 0.8x

 1x

 1.2x

 1.4x

 1.6x

ap
ac

h
e

ja
v

a

m
ak

e−
j2

m
y

sq
l

ra
d

ix lu

w
at

er
−

sp
at

S
lo

w
d

o
w

n

Application

Replay runtime (2 cores)

Figure 16: Two-processor replay-mode runtime overheads nor-
malized with native execution time.

The surprising result here is that schedule-trace replay
and read-trace replay are much faster than what one might
expect of a serialized execution in which all reads are in-
tercepted. Two additional optimizations employed by ODR

explain these results. For the first optimization, rather than
follow the schedule-trace precisely, ODR simply replays the
lock-order of the schedule-trace (which for si-dri and qi-

dri is the original lock-order). For the second optimization,
rather than replay all read-values in the read-trace, ODR re-
plays just those of racing reads.

Replay speed is not near-native largely due to the cost
of intercepting and replaying lock-instructions, a key bot-
tleneck in record mode as well. Applications with a high
locking rate (e.g., java, SP2 apps) suffer the most. We hope
to improve these costs in a future implementation, perhaps
by moving to a library-level lock interception scheme. As
with other replay systems, native execution time in replay
mode is smaller for I/O intensive apps because ODR skips the
time originally spent waiting for I/O [13].

10. LIMITATIONS AND FUTUREWORK
ODR has several limitations that warrant further research.

Here we present key limitations most relevant to the evalu-
ated inference methods (si-dri and qi-dri) along with pos-
sible improvements.

Inference time. The inference times for si-dri and, to a
lesser extent, qi-dri are impractically high for many appli-
cations. The key bottleneck, path selection (Section 6.2.1),
can be fundamentally improved in many ways. One is to find
a middle ground between si-dri and qi-dri, for instance by
placing only potentially-race-tainted branches in the path-
sample. Another fundamental improvement is to offload the
task of finding the path to the formula solver. The solver can
apply reasoning to search paths more efficiently than path-

select, which employs a primitive guess-and-check method.
At the implementation level, a big improvement would be

to simply avoid invoking the race oracle on the entire path
under consideration for each path-select backtrack.

Recording overhead. ODR’s recording slowdown under si-

dri, though low, is still too high for always-on production
use. One bottleneck, lock-tracing overhead, can be reduced

D
a
ta

ra
ce

s

M
u
lt

ip
le

C
P

U
s

E
ffi

ci
en

t
a
n
d

sc
a
la

b
le

re
co

rd
in

g

S
o
ft

w
a
re

-o
n
ly

D
et

er
m

in
is

m

Jockey [22] Yes No Yes Yes Value
RecPlay [21] No Yes Yes Yes Value
SMP-ReVirt [5] Yes Yes No Yes Value
iDNA [3] Yes Yes No Yes Value
CapoOne [18] Yes Yes Yes No Value
ODR Yes Yes Yes Yes Output

Figure 17: Summary of key related work.

by tracing locks at the library rather than instruction gran-
ularity. The other bottleneck, system-call emulation over-
head, can be reduced by shifting more work into the kernel.
ODR’s recording slowdown under qi-dri is much too high

even for periodic production use. The key bottleneck, branch-
tracing, can be dramatically reduced using program analysis.
For instance, the TraceBack branch tracing system [2] slows
down native execution by only an average of 60% for CPU
intensive benchmarks.

Formula solving. For inference to work, the formula solver
must be able to find a satisfying assignment for the gener-
ated formula. In reality, formula solvers have hard and soft
limits on the kinds of formulas they can solve. For example,
no solver can invert hash functions in a feasible amount of
time, and the constraint solver we use (STP [4]) does not
support floating-point arithmetic.

All of the formulas we encountered were limited to lin-
ear bit-vector arithmetic operations, which STP solves in
polynomial time [6]. However, some applications from the
Splash2 suite (e.g., FMM) do generate floating point con-
straints. A potential workaround is to not generate any
constraints for such unsupported operations and, instead,
treat them as blackbox functions that we can simply skip
during replay.

11. RELATEDWORK
Figure 17 compares ODR with other replay systems along

key dimensions.
Many replay systems record race outcomes either by record-

ing memory access content or ordering, but they either do
not support multiprocessors [22] or incur huge slowdowns [3].
Systems such as RecPlay [21] and more recently R2 [8] can
record efficiently on multiprocessors, but assume data-race
freedom. ODR provides efficient recording and can reliably
replay races, but it does not record race outcomes; it com-
putes them.

Much recent work has focused on harnessing hardware as-
sistance for efficient recording of races. Such systems can
record very efficiently. But the hardware they rely on can
be unconventional and in any case exists only in simulation.
ODR can be used today and its core techniques (tracing and
inference) can be ported to a variety of commodity architec-
tures.

The current implementation of ODR is not as record-efficient
as hardware multiprocessor replay systems, but is compa-
rable. CapoOne [18], for instance, outperforms ODR by an

average factor of 0.5x. On the other hand, ODR is, overall,
the most record-efficient system of existing software mul-
tiprocessors systems that replay races. SMP-Revirt, ODR’s
closest competitor, succumbs to false sharing (for some ap-
plications) as the number of cores increases, while ODR does
not.

The idea of relaxing determinism is as old as determinis-
tic replay technology. Indeed, all existing systems strive
for value determinism–a relaxed form of determinism, as
pointed out in Section 3. By striving for output determin-
ism, ODR merely goes one step further. Relaxed determinism
was recently re-discovered in the Replicant system [20], but
in the context of redundant execution systems. Their tech-
niques are, however, inapplicable to the output-failure replay
problem because they assume access to execution replicas in
order to tolerate divergences.

12. CONCLUSION
We have designed and built ODR, a software-only, replay

system for multiprocessor applications. ODR achieves low-
overhead recording of multiprocessor runs by relaxing its
determinism requirements–it generates a run that exhibits
the same outputs as the original rather than an identical
replica. This relaxation, combined with efficient search, en-
ables ODR to circumvent the problem of reproducing data
races. The result is record-efficient output-deterministic re-
play of real applications.

We have many plans to improve ODR. Among them is a
more comprehensive study of output-determinism and the
limits of its power. We also hope to get more applications
running on ODR, so that we may better understand the lim-
its of our inference technique. And of course, we aim to
remove the limitations listed in Section 10. Looking for-
ward, output-deterministic replay of networked applications
seems promising.

13. ACKNOWLEDGEMENTS
We are indebted to our shepherd Steven Hand for his de-

tailed feedback. The paper is fundamentally better because
of his efforts. We also thank the anonymous reviewers, Den-
nis Geels, Shan He, Jayanth Kannan, David Molnar, and Lu-
cian Popa for feedback on early drafts of this paper. Finally,
this research is supported in part by gifts from Sun Microsys-
tems, Google, Microsoft, Amazon Web Services, Cisco Sys-
tems, Facebook, Hewlett-Packard, Network Appliance, and
VMWare, and by matching funds from the State of Califor-
nia’s MICRO program (grant 06-149) and the UC Discovery
grant COM07-10240.

14. REFERENCES
[1] G. Altekar and I. Stoica. Output-deterministic replay for

multicore debugging. Technical Report UCB/EECS-2009-108,
EECS Department, University of California, Berkeley, Aug
2009.

[2] A. Ayers, R. Schooler, C. Metcalf, A. Agarwal, J. Rhee, and
E. Witchel. Traceback: first fault diagnosis by reconstruction of
distributed control flow. In V. Sarkar and M. W. Hall, editors,
PLDI, pages 201–212. ACM, 2005.

[3] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray,
M. Drinić, D. Mihočka, and J. Chau. Framework for
instruction-level tracing and analysis of program executions. In
VEE ’06, pages 154–163, New York, NY, USA, 2006. ACM.

[4] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. Exe: automatically generating inputs of death. In CCS
’06: Proceedings of the 13th ACM conference on Computer

and communications security, pages 322–335, New York, NY,
USA, 2006. ACM Press.

[5] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M.
Chen. Execution replay of multiprocessor virtual machines. In
VEE ’08, pages 121–130, New York, NY, USA, 2008. ACM.

[6] V. Ganesh and D. L. Dill. A decision procedure for bit-vectors
and arrays. In W. Damm and H. Hermanns, editors, CAV,
volume 4590 of Lecture Notes in Computer Science, pages
519–531. Springer, 2007.

[7] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay
debugging for distributed applications. In USENIX Annual
Technical Conference, General Track, pages 289–300.
USENIX, 2006.

[8] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F.
Kaashoek, and Z. Zhang. R2: An application-level kernel for
record and replay. In R. Draves and R. van Renesse, editors,
OSDI, pages 193–208. USENIX Association, 2008.

[9] J. L. Hennessy and D. A. Patterson. Computer Architecture,
Fourth Edition: A Quantitative Approach. Morgan Kaufmann,
September 2006.

[10] D. R. Hower and M. D. Hill. Rerun: Exploiting episodes for
lightweight memory race recording. In ISCA ’08: Proceedings
of the 35th International Symposium on Computer
Architecture, pages 265–276, Washington, DC, USA, 2008.
IEEE Computer Society.

[11] Intel. Intel 64 and IA-32 Architectures Reference Manual,
November 2008.

[12] J. C. King. Symbolic execution and program testing. Commun.
ACM, 19(7):385–394, 1976.

[13] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging
operating systems with time-traveling virtual machines. In
USENIX Annual Technical Conference, General Track, pages
1–15. USENIX, 2005.

[14] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7):558–565, 1978.

[15] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building
customized program analysis tools with dynamic
instrumentation. In PLDI ’05: Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and
implementation, volume 40, pages 190–200, New York, NY,
USA, June 2005. ACM Press.

[16] D. A. Molnar and D. Wagner. Catchconv: Symbolic execution
and run-time type inference for integer conversion errors.
Technical Report UCB/EECS-2007-23, EECS Department,
University of California, Berkeley, 2007.

[17] P. Montesinos, L. Ceze, and J. Torrellas. Delorean: Recording
and deterministically replaying shared-memory multiprocessor
execution efficiently. In ISCA ’08: Proceedings of the 35th
International Symposium on Computer Architecture, pages
289–300, Washington, DC, USA, 2008. IEEE Computer Society.

[18] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas. Capo: a
software-hardware interface for practical deterministic
multiprocessor replay. In M. L. Soffa and M. J. Irwin, editors,
ASPLOS, pages 73–84. ACM, 2009.

[19] N. Nethercote and J. Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. SIGPLAN Not.,
42(6):89–100, June 2007.

[20] J. Pool, I. S. K. Wong, and D. Lie. Relaxed determinism:
making redundant execution on multiprocessors practical. In
HOTOS’07: Proceedings of the 11th USENIX workshop on
Hot topics in operating systems, pages 1–6, Berkeley, CA,
USA, 2007. USENIX Association.

[21] M. Ronsse and K. De Bosschere. Recplay: a fully integrated
practical record/replay system. ACM Trans. Comput. Syst.,
17(2):133–152, 1999.

[22] Y. Saito. Jockey: A user-space library for record-replay
debugging. In In AADEBUG’05: Proceedings of the sixth
international symposium on Automated analysis-driven
debugging, pages 69–76. ACM Press, 2005.

[23] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and methodological
considerations. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pages
24–37, New York, February 1995. ACM Press.

	Introduction
	The Problem
	Background: Value Determinism
	Overview
	Output Determinism
	Definitions
	Deterministic-Run Inference
	Design Space
	Design Targets

	Search-Intensive DRI
	Overview
	Core Algorithm
	Query-Directed Search
	Relaxed Consistency Reduction

	Stages in Detail
	Definitions
	Read Trace-Set Guidance
	Path Select
	Formula Generation
	Race Oracle

	Output Matching

	Query-Intensive DRI
	Implementation
	Tracing Inputs and Outputs
	Tracing Lock-Order
	Tracing Branches
	Formula Generation

	Performance
	Setup
	si-dri Record Mode
	si-dri Inference Mode
	Path-Selection
	Formula Generation and Solving

	qi-dri Record and Inference Modes
	Replay Mode

	Limitations and Future Work
	Related Work
	Conclusion
	Acknowledgements
	References

