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ABSTRACT
TWINSCAN is a new gene-structure prediction system

that directly extends the probability model of GENSCAN,
allowing it to exploit homology between two related
genomes. Separate probability models are used for
conservation in exons, introns, splice sites, and UTRs,
reflecting the differences among their patterns of evolu-
tionary conservation. TWINSCAN is specifically designed
for the analysis of high-throughput genomic sequences
containing an unknown number of genes. In experiments
on high-throughput mouse sequences, using homologous
sequences from the human genome, TWINSCAN shows
notable improvement over GENSCAN in exon sensitivity
and specificity and dramatic improvement in exact gene
sensitivity and specificity. This improvement can be
attributed entirely to modeling the patterns of evolutionary
conservation in genomic sequence.
Contact: {ikorf, pflicek, duan, brent}@cs.wustl.edu

—————————————————————–

INTRODUCTION
A complete mapping from genome to proteome would
constitute a foundation for genome-based biology. How-
ever, determining the structures of protein coding genes in
eukaryotic genomic DNA is a difficult problem for which
there are no reliable experimental or computational tools.
The large volume of genomic sequence now available
necessitates automated analysis methods; this need will
become even more pronounced as the sequences of
additional genomes become available.

Computational gene prediction has been an active area
of research for over 20 years. The algorithms that have
been developed are traditionally categorized as either
ab initio or alignment-based. Ab initio methods, such
as GENSCAN (Burge, 1997; Burge & Karlin, 1997) and
GENIE (Reese et al., 2000b), make predictions using
only the DNA sequence to be annotated and a model
of gene structure. Alignment-based methods, such as
PROCRUSTES (Gelfand et al., 1996) and GENEWISE

(E. Birney, unplublished), attempt to align homologous
proteins to genomic sequence. This dichotomy of methods
has broken down in recent years with the invention of hy-
brid approaches that integrate EST or protein similarities
into ab initio methods (Hooper et al., 2000; Reese et al.,
2000a; Yeh et al., 2001).

The performance of new algorithms is often bench
marked using the dataset and methods of Burset &
Guigo (1996). This dataset consists of 570 short genomic
sequences (average length 5074 bp) containing one
complete multi-exon gene without alternatively spliced
forms. Burset and Guigo employ several measures of gene
prediction accuracy, including exact exon sensitivity —
the fraction of true exons whose boundaries are predicted
precisely. Most ab initio methods correctly identify
about 50% of the real exons (Burset & Guigo, 1996).
One of the most accurate is GENSCAN which is capable
of achieving a respectable 78% exon sensitivity on the
Burset-Guigo set (Burge & Karlin, 1997). The accuracy
of alignment-based methods depends upon their protein
databases; genes with similarities in the database may be
predicted with high accuracy, while genes that are not
similar to those in the database will not be predicted at
all. Although hybrid methods have great promise because
they can use both intrinsic and extrinsic information, they
have shown only a moderate improvement over purely ab
initio methods so far.

A new class of gene-prediction algorithms has recently
been reported that leverages the power of comparative
genomics. Alignments between genomic sequences from
related species, particularly mouse and human, have
shown that sequence similarity is a powerful approach
for identifying genes and regulatory elements (Hardison
et al., 1997; Oeltjen et al., 1997; Ansari-Lari et al., 1998;
Jang et al., 1999). The two reported comparative genomics
algorithms are ROSETTA (Batzoglou et al., 2000) and
CEM (Bafna & Huson, 2000). These programs cannot
be bench marked with the Burset-Guigo set because they
require pairs of sequences, so the authors created their
own gene sets. Like the Burset-Guigo set, the ROSETTA
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and CEM sets also consist of short sequences containing
exactly one gene.

Single-gene sequences do not represent a typical
application for gene prediction programs. A common sce-
nario is the analysis of high-throughput genomic (HTG)
sequences, which are generally 100-200 Kb in length
and contain an unknown number of genes. The gene
prediction problem is much harder in these sequences
than in single-gene sequences because gene boundaries
are unknown, genes may be incomplete, and genes may
lie on either strand. The performance of ROSETTA, CEM,
and many other gene-prediction programs has not been
evaluated on HTG sequences either because their algo-
rithms assume the input sequence contains exactly one
gene or because the authors chose not to evaluate them
in this way. GENSCAN was designed for HTG sequences,
but its performance drops from 43% exact gene sensitivity
on the Burset-Guigo set to 15% on the HTG sequences in
the experiments reported below (see Results).

In this paper, we report on TWINSCAN, a novel
comparative-genomics-based gene-prediction system
that has been designed for the analysis of HTG se-
quences. TWINSCAN is based on GENSCAN++, our C++
reimplementation of GENSCAN. TWINSCAN integrates
cross-species similarity of HTG sequences into the prob-
ability model underlying GENSCAN. In the experiments
reported below, TWINSCAN shows notable improvement
over GENSCAN in exon sensitivity and specificity and
dramatic improvement in exact gene sensitivity and
specificity. Because TWINSCAN is a direct extension of
GENSCAN, we can attribute this performance difference
directly to modeling evolutionary conservation.

METHODS
Datasets
In order to train and test our algorithm, we needed
annotated genomic sequences and their homologs. Ideally,
we would have liked to use a set of collinear orthologous
human and mouse sequences with experimentally verified
genes. In addition, because we are focusing on high-
throughput analysis, the sequences should be large and
contain a mixture of complete and incomplete genes,
single- and multi-exon genes, and genes on both strands.
Jareborg et al. (1999) curated a set of orthologous genomic
sequences, but only a few were long, and a detailed
inspection revealed some annotation errors. Because no
appropriate dataset was available, we developed two of our
own.

In describing our data sets, we make use of the following
terms.

Target sequence A genomic sequence to be annotated by
a gene prediction program.

Informant sequence A genomic sequence from a related
organism that is similar to the target sequence.

Operational ortholog The sequence from the informant
genome that matches a given target sequence best.
Match quality is measured by the sum of alignment
scores in a BLAST search.

Top homologs One or more sequences from the infor-
mant genome that match a given target sequence
best. For our experiments, we chose the four best
matches.

Finished sequence Contiguous genomic sequence with
an error rate of less than 1 in 10,000 bp.

Draft sequence A collection of typically 10-40 genomic
sequence fragments of various sizes, in unknown
order and orientation, produced by automated as-
sembly of shotgun reads from BAC clones (100-200
Kb).

High Scoring Pair (HSP) A local alignment reported by
BLAST.

Our first data set (Set 1) contains 68 mouse sequences
and their top homologs from the human genome. We chose
mouse target sequences because the human genome is
effectively complete and therefore offers many possible
informant sequences, including likely orthologs. Our
original plan was to use the operational orthologs, but this
simplistic one-to-one mapping means that large regions of
the target and informant sequences may be unaligned. This
can result from offsets in the BAC clones or from gene
rearrangements that disrupt conserved syntenies. Visual
inspection within ACEDB (R. Durbin and J. Thierry-
Mieg unpublished, �����������
	��
�������� ) showed that top
homologs frequently fill in the ends and holes left after
alignment with the operational ortholog.

Set 1 was constructed by first querying GenBank
release 121 for all mouse sequences over 30 Kb in
length with annotated coding sequences (CDS). The
resulting 86 sequences were filtered to remove those
sequences with unsupported genes or those that omit
real genes. Unsupported genes were identified as CDS
annotations without any protein or EST evidence for any
part of the predicted coding sequence. The challenge
of finding unsupported genes is that the original CDS
annotation shows up as a protein match, falsely verifying
the gene. We therefore required at least two protein
similarities for every CDS or, alternatively, transcript
similarities. Omitted genes were identified as strong
protein similarities (P-value ≤ 1e-5 and percent identity
≥ 50%) without any corresponding CDS annotation. The
challenge in finding omitted genes is that pseudogenes
can look like unannotated CDSs because they have high
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quality BLASTX alignments. We were able to identify
pseudogenes by looking for stop codons and frame-
shifts in the BLASTX reports. Eighteen sequences with
unsupported or omitted genes were removed, which left
68 sequences with plausible annotation. The 68 mouse
sequences total 7.6 Mb with mean length 112 Kb and
median length 98 Kb.

To recover the top homologs, we processed each
sequence with RepeatMasker (A.F.A. Smit and P. Green,
unpublished) and then performed a WU-BLASTN (W.
Gish, unpublished, 

� ����� � ������� � ��	���� ) search against
a database containing all human genomic sequences in
GenBank release 121 (default parameters were used).
The top four matches were kept as informant sequences.
The danger in keeping too many top homologs is that
one may introduce noise from spurious matches that
are not truly homolgous. We chose the top four because
of the possible two complete genome duplications in
the vertebrate lineage (Meyer & Schartl, 1999). Draft
sequences accounted for 53% of the top homologs.

Our second data set (Set 2) is a subset of Set 1
containing eight pairs of finished operational orthologs.
The coding sequences were annotated by one of the
authors (IK) using a typical sequence analysis pipeline
involving protein, transcript, and genome similarities.
Importantly, the sequences were annotated in parallel. The
advantage of this is that the gene structures were checked
against each other, and this helped to avoid mistakes. The
disadvantage is that the annotator is a biased individual
predisposed to believe in the importance of genomic
conservation. However, the annotator believes that the
gene structures are of the highest possible quality given
the current information. Where the gene structures are
different from their counterparts reported in the GenBank
entry, they were corrected for good reasons. In one
sequence AP001917 (gi:8953895), a potential sequencing
error was predicted because it changed the parallel gene
structures. This was reported to the sequencing center, the
error was promptly verified, and the sequence has been
updated (gi:10945234).

To ensure that GENSCAN, GENSCAN++, and TWIN-
SCAN were on equal footing, and only predicted genes
within the limits of conservation, the target sequences
were edited by masking all sequence outside the region
of conservation. For Set 1 this was 100 bp beyond the
5′-most and 3′-most HSPs. For Set 2 this was determined
manually.

Conservation Sequence
We chose to model sequence similarity by a representation
we call a conservation sequence. A conservation sequence
pairs one of three symbols with each nucleotide of the
target sequence:

� ��	 � ��
 ��	 	��
�  ��� ��� 	��
�  
 �  ��� ��� 	��

Gaps in the informant sequence become mismatch sym-
bols; gaps in the target sequence are ignored. For example,
consider the sequence:
������������������� ��� 
 � 
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and suppose that BLAST yields the following HSP:
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Note that positions 1 and 2 of the target sequence are
not aligned to anything in the informant sequence. The
conservation sequence derived from this HSP is:
������������������� ��� 
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To create the conservation sequence, we first masked
the target sequence with RepeatMasker using the 2 �  � ���
option to report repetitive regions in lowercase rather
than converting them to N’s. Next, we aligned the
target sequence to the informant sequences with WU-
BLASTN (parameters: 3�4 �65 4 �87 4 (���9 4 �;: 4 �=< 4 ��>- 4 �?�@-�� 4 �?� � � ��-�� 4 ��> � �  ���BA � �
� �  ���BA 4 �&�����
� �����  ����A 4 � 	��C��� � �
�   � 7 4 � ). The

� �  �'��A option
prevents alignments from being seeded in lowercase
regions but does not prevent externally-seeded alignments
from extending into these regions. Lowercase masking,
also known as soft-masking is important because it pre-
vents many false-positive alignments without prohibiting
alignments in low-complexity or repeat-like regions,
which are sometimes present in coding sequences.

The conservation sequence was constructed by the fol-
lowing procedure, which makes use of the HSPs from the
top four homologs ( D -�E � ) and a target sequence (
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Note that the conservation symbol assigned to the target
nucleotide in position



is determined by the best individ-

ual HSP to overlap position


, regardless of which homol-

ogous sequence it comes from. Position



is classified as
unaligned only if none of the HSPs overlap it.
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Fig. 1. An example DNA sequence together with the corresponding
conservation sequence.

GENSCAN, GENSCAN++, and TWINSCAN

We began by reimplementing GENSCAN, as specified in
Burge (1997). After incorporating most of the minor dif-
ferences between the published version and the distributed
executable, both the predictions and the accuracy of the
our reimplementation are extremely close to those of the
distributed GENSCAN executable (see Results). Since the
new implementation is in C++, we refer to it as GEN-
SCAN++.

GENSCAN assigns each nucleotide of an input sequence
to one of seven general categories: promoter, 5′ UTR,
exon, intron, 3′ UTR, poly-adenylation (poly-A) sig-
nal, and intergenic. GENSCAN chooses the most likely
assignment of categories to nucleotides according to a
probabilistic model of gene structure, called the Genscan
model hereafter. Let us call any DNA sequence together
with a categorization of all its nucleotides a parsed
sequence. The GENSCAN model assigns a probability to
every possible parsed sequence. The GENSCAN system
consists of the model together with an optimization algo-
rithm. Given a DNA sequence, the optimization algorithm
evaluates parses of that sequence in order to find the one
with greatest probability, according to the model.

We have developed a new model that assigns probability
to any parsed DNA sequence together with a parallel
conservation sequence. Under our model, the probability
of a DNA sequence and the probability of the parallel
conservation sequence are independent, given a parse. The
probability of the DNA sequence, given the parse, is the
same as under the GENSCAN model. The probability of
the conservation sequence, given the parse, is computed
according to the conservation model described below.
For example, consider the pair consisting of the target
sequence and conservation sequence shown in Figure 1. In
particular, consider the probability of observing the target
sequence and the conservation sequence extending from
position 7 to position 33, given that there is an an internal
exon extending from position 7 to position 33. This is
simply the probability of the target sequence under the
GENSCAN model times the probability of the conservation
sequence under the conservation model, given an exon
extending from 7 to 33:

Pr(T7,33,C7,33|E7,33) = Pr(T7,33|E7,33) Pr(C7,33|E7,33)

where T7,33 is the target DNA sequence from position

7 to position 33, inclusive, C7,33 is the corresponding
conservation sequence, and E7,33 is the hypothesis that an
exon begins at position 7 and ends at position 33.

TWINSCAN consists of the new, joint probability model
on DNA sequences and conservation sequences, together
with the same optimization algorithm used by GENSCAN.

Probability models The GENSCAN model is based on
an explicit state duration Hidden Markov Model (HMM).
Each state of the HMM corresponds to one of the
seven categories with which all nucleotides are ultimately
labeled — promoter, 5′ UTR, exon, intron, etc. (see
Fig. 2). The model can be divided into three components:
the transition model, which specifies the probability of
moving from any one state to any other state, the duration
model, which specifies the probability of staying in a given
state for a given number of nucleotides before changing
to another state, and the state-specific sequence models,
which specify the probability of any given nucleotide
sequence being generated from any given state. For details
of these models, see Burge (1997).

TWINSCAN augments the state-specific sequence
models of GENSCAN with models of the probability of
generating any given conservation sequence from any
given state. Thus, TWINSCAN’s state-specific models
specify joint probability distributions on DNA sequence
and conservation sequence. Coding, UTR, and in-
tron/intergenic states all assign probability to stretches
of conservation sequence using homogeneous 5th-order
Markov chains. One set of parameters is estimated for
the coding regions (excluding translation initiation and
termination signals), one for the translation initiation and
termination signals, one for the UTR states, and one for
the intron and intergenic states. In Figure 1, for example,
the probability of observing the conservation sequence
from position 7 to position 33, given that an exon spans
positions 7 to 33, is:

PrC(C7,33 | E7,33) =
PrE(C7,7 |C2,6) · . . . · PrE(C33,33 |C28,32),

where PrE(C33,33 |C28,32), for example, is the estimated
probability of a

�
(match) following the five context

symbols
� � ��� � in the conservation sequence of an exon.

(Note that the symbol
�

used in conservation sequence
is not related to the use of the same symbol to indicate
conditioning of a probability distribution.) On the other
hand, the probability of the same conservation sequence
given that positions 7 to 33 are part of a UTR is computed
according to a different 5th-order Markov chain:

PrC(C7,33 |U7,33) =
PrU(C7,7 |C2,6) · . . . · PrU(C33,33 |C28,32),

where PrU(C33,33 |C28,32), for example, is the estimated
probability of a

�
following the five symbols

� � ��� � in the
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Fig. 2. The states of the GENSCAN model. Arrows indicate
transitions with nonzero probability for genes on the forward
strand. States Exon 0, Exon 1, and Exon 2 represent internal
exons with different reading frames; states I0, I1, and I2 represent
introns following exons with different reading frames; 5′ represents
the region upstream of the first coding exon of a gene; 3′
represents the region downstream of the last coding exon of a gene;
Prom represents the promoter region, and PolyA represents the
polyadenylation signal. An analogous model is used for genes on
the opposite strand.

conservation sequence of a UTR. Models of conservation
sequence at splice donor and acceptor sites were based
on 2nd-order Weight Array Matrices (WAMs: Salzberg,
1997; Zhang and Marr, 1993). These models consist of
separate 2nd-order Markov chains for each position in a

fixed-sized window. Following GENSCAN, the donor site
window was fixed at 9 bp and the acceptor site at 43 bp.

The parameters of the conservation models must be
estimated from annotated training sequences. The ex-
periments we report were performed using an eight-fold
cross-validation. Specifically, all sequences in each
dataset were divided into eight groups by their accession
numbers. Eight experiments were performed. In each
experiment, a different 1/8 of the sequences was used
for performance evaluation while the remaining 7/8 were
used for parameter estimation. The results of these eight
experiments were combined in the results reported below.
Parameter estimates were smoothed by adding one to
the counts for each symbol in each context. Because
it is difficult to determine the ends of the UTRs, the
parameters of the conservation model for UTRs were
estimated from 100 nucleotides upstream of the initial
ATG and 100 nucleotides downstream of the stop codon.

Optimization algorithm Given a particular HMM, the
problem of figuring out the state sequence that is most
likely to generate an observed output sequence is known
as decoding. The Viterbi algorithm is an efficient (worst-
case linear time) decoding algorithm for standard HMMs.
However, the GENSCAN model is an explicit state-
duration HMM, meaning that each state specifies the
probability of staying in that state for d consecutive
nucleotides. In a standard HMM, the duration distributions
all decay exponentially. In general, the decoding problem
for explicit state-duration HMMs takes time proportional
to the cube of the input length, which is not acceptable
for most genomic applications. However, all states in
the GENSCAN model except the exon states do use
either exponential duration distributions (like in a standard
HMM) or fixed, constant durations. Burge was able to
exploit this, along with other special properties of the
GENSCAN model, to derive an algorithm whose running
time grows as the square of the input length in the
theoretical worst case. In practice, GENSCAN’s running
time, and hence TWINSCAN’s, grows only linearly for
genomic sequences longer than a few kilobases. The main
reason is that the number of potential exons (spliceable
open reading frames) grows only linearly in genomic
sequences longer than a few kilobases.

Performance Evaluation
We used three categories for comparing exons: true pos-
itives (TP) are exons where the prediction matches the
annotation exactly, false positives (FP) are predicted ex-
ons that do not match the annotation exactly, and false
negatives (FN) are annotated exons that are not predicted
exactly. We used the same categories for comparing pre-
dicted genes to annotated genes: true positives are pre-
dicted genes that exactly match annotated genes, false pos-

5



I. Korf et al.

0

5

10

15

20

25

30

Sensitivity Specificity

P
er

ce
n

ta
g

e
Genscan
Twinscan

Fig. 3. Exact Gene Accuracy in Set 1

itives are predicted genes that do not exactly match anno-
tated genes, and false negatives are annotated genes that
are not predicted exactly. We assessed the performance of
GENSCAN, GENSCAN++, and TWINSCAN by measuring
their sensitivity (SN) and specificity (SP) at the exon and
gene levels. SN and SP are defined as follows:

SN = TP

TP+ FN

SP = TP

TP+ FP

RESULTS
The results of our comparison of GENSCAN, GEN-
SCAN++, and TWINSCAN are shown in Table 1 and
Table 2. The tables show that the performance of GEN-
SCAN++ is very similar to that of the original GENSCAN.
GENSCAN++ tends to find more exons and more genes,
but its sensitivity and specificity at both the exon and gene
levels are nearly identical. From our manual inspection,
it appears that GENSCAN++ finds additional exons in
long introns. We suspect that this difference is due to
an undocumented feature of GENSCAN that boosts the
probabilities of long introns and intergenic regions.

Table 1 shows that TWINSCAN outperforms GENSCAN

by all measures in Set 1. TWINSCAN achieves 68% sensi-
tivity at the exon level compared to 63% for GENSCAN.
The difference in exon specificity is even greater: 66% vs.
58%. TWINSCAN also performs better in comparisons at
the nucleotide level (data not shown). Most importantly,
TWINSCAN achieves 24% sensitivity in exact gene pre-
diction, as compared to 15% for GENSCAN (Figure 3).
For specificity in exact gene prediction TWINSCAN
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Fig. 4. Exact Gene Accuracy in Set 2

achieves 14.4%, as compared to 10.6% for GENSCAN.
A chi-squared analysis reveals that TWINSCAN predicts
a reliably greater fraction of the annotated genes ex-
actly (χ2(1) = 7.15, p = .007). Conversely, a greater
fraction of the genes predicted by TWINSCAN are exact
matches to annotated genes, but this difference does not
reach conventional levels of significance (χ 2(1) = 2.79,
p = .095).

The coding sequence annotations for the 68 sequences
in Set 1 were taken to be correct for purposes of this ex-
periment. However, it is likely that these annotations con-
tain some errors. Compiling a set of reliable annotations
for HTG sequences is a difficult problem, especially when
pairs of sequences are required. However, such a set is
essential to properly train and test gene prediction algo-
rithms. To remedy this, we evaluated the performance of
TWINSCAN on sequences with high quality annotation.

The performance of both TWINSCAN and GENSCAN on
Set 2 is better than on Set 1. As in Set 1, TWINSCAN out-
performs GENSCAN by all measures. Perhaps the most im-
pressive result is the relative difference between TWIN-
SCAN and GENSCAN at the gene level (See Figure 4).
TWINSCAN outperforms GENSCAN by 62% for sensitiv-
ity and 66% for specificity. Overall, however, the results
from Set 2 are consistent with the results from Set 1.

An example of how TWINSCAN predictions differ from
GENSCAN predictions is depicted in Figure 5. The 5′-exon
of the gene shown in this region is predicted correctly
by TWINSCAN. GENSCAN misses the proper structure at
the 5′ end, finding a different initial exon and an internal
exon instead of the short initial exon in the annotated
structure. TWINSCAN chooses the correct structure, in
part, because the pattern of conservation in the alignments
near the correct initial exon increases the score of that
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Table 1. Gene Prediction Performance on Set 1

Program Exons Exon SN Exon SP Genes Gene SN Gene SP

Annotation 2758 275
GENSCAN 2997 0.631 0.581 395 0.153 0.106
GENSCAN++ 3024 0.628 0.572 413 0.156 0.104
TWINSCAN 2854 0.683 0.660 464 0.244 0.144

Table 2. Gene Prediction Performance on Set 2

Program Exons Exon SN Exon SP Genes Gene SN Gene SP

Annotation 610 48
GENSCAN 731 0.798 0.666 51 0.167 0.157
GENSCAN++ 734 0.795 0.661 53 0.167 0.151
TWINSCAN 684 0.843 0.752 50 0.271 0.260

exon. This decision is also influenced by the lack of
conservation near the initial exon chosen by GENSCAN,
and by the fact that the conservation sequence near the
second exon chosen by GENSCAN contains many gaps
and/or mismatches, pulling down its score. Moving to
exon 3 of the annotated structure, GENSCAN choses an
incorrect splice donor site (see magnified image at right
of Figure 5). TWINSCAN chooses the correct splice site
because the alignment ends before the end of the exon
chosen by GENSCAN, pulling down the conservation score
of the exon chosen by GENSCAN below that of the correct
exon.

DISCUSSION
Our experiments demonstrate that integrating genomic
similarity into the GENSCAN algorithm significantly
improves its accuracy, especially in the important task
of complete gene prediction. The relative improvement
in exact gene sensitivity is about 60%. Although this is
impressive, TWINSCAN only predicts about one quarter
of the genes correctly. This underscores the fact that gene
prediction is a difficult problem, especially in realistic data
sets. To make TWINSCAN more accurate, we plan to use
more expressive measures of conservation. We also plan
to extend the system to make use of additional information
sources, such as transcript and protein similarities.

Although our comparisons focused on GENSCAN, a
number of other systems are under active development.
Recently, the Genome Annotation Assessment Project
(GASP) compared a number of gene prediction systems
using a 2.9-Mb sequence contig from the Adh region of the
fruit fly Drosophila melanogaster (Reese et al., 2000a).
The systems compared included FGENES (Salamov &
Solovyev, 2000), GENEID (Parra et al., 2000), GENIE

(Kulp et al., 1996; Reese et al., 2000b), HMMGENE

(Krogh, 1997, 2000), MAGPIE EXON (Gaasterland et al.,
2000), and GRAIL (Xu et al., ????). GENSCAN was
not tested. Instead, it was used in defining one of the
gold standards of correct annotation against which other
systems were evaluated, suggesting that it is still widely
considered to define the state of the art. The best programs
were reported to have exact-gene sensitivity of about 40%
and specificity of about 30%. However, these numbers
cannot be compared to the GENSCAN and TWINSCAN

results reported above. These two numbers were computed
by comparison to two very different standards of correct
annotation for the test sequence, one designed to yield an
upper bound on the sensitivity and the other designed to
yield an upper bound on the specificity. Our sensitivity and
specificity, on the other hand, were computed against the
same standard. In addition, the accuracy of gene-structure
prediction systems on the Drosophila genome may differ
from their accuracy on vertebrate genomes.

An important difference between TWINSCAN and the
previously published comparative-genomics methods,
ROSETTA and CEM, is that TWINSCAN does not attempt
to globally align the exons of two orthologous sequences.
Global alignment requires that the two sequences have
the same exon-intron structure. Extending this global
alignment strategy to multi-gene sequences would re-
quire the assumption that the two sequences have the
same genes in the same order and orientation. We have
observed several cases in our data sets where this is not
true. Similarly, in a large-scale comparison between the
nematodes Caenorhabditis briggsae and Caenorhabditis
elegans Kent & Zahler (2000) found that rearrangements
are common, occurring on average every 8.5 Kb.

Using a global alignment strategy requires informant
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Fig. 5. Detailed view of the annotation, gene predictions and con-
servation at the L44L gene (AAB47245.1) from the Mus muscu-
lus Bruton’s tyrosine kinase locus (U58105.1). The magnification at
right shows the region around exon 3. The width of boxes represent-
ing BLAST alignments corresponds to the quality of the alignment.
The image comes from ACEDB.

sequences to be finished. Our conservation sequence
approach, which is based on the highest scoring lo-
cal alignments, allows one to use draft and shotgun
sequences. The conservation sequence effectively re-
arranges the alignments into the correct order and
orientation. In addition, because the HSPs are sorted
by score and conservation symbols are not overwritten,
orthologies can be represented in favor of paralogies
and spurious similarities. In our experiments, more than
half of the top homologs were, in fact, draft sequences.

Even whole-genome shotgun sequence can be used to
create conservation sequence—one merely adjusts the
parameters for defining the top homologs. Experiments to
determine the proper parameters are currently underway.

TWINSCAN’s main limitation is that the target sequence
must have appropriate informant sequences. With TWIN-
SCAN’s ability to utilize unfinished informant sequences,
and with the current rate of genome sequencing, this will
become a minor restriction.

More information, including the datasets, is available
online at ��	�	 	'� � �"� � ��� �?� � ��	��&� .
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